References
Steinegger M and Soeding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology, doi: 10.1038/nbt.3988 (2017).
Steinegger M and Soeding J. Clustering huge protein sequence sets in linear time. Nature Communications, doi: 10.1038/s41467-018-04964-5 (2018).
Mirdita M, Steinegger M and Soeding J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics, doi: 10.1093/bioinformatics/bty1057 (2019).
Mirdita M, Steinegger M, Breitwieser F, Soding J, Levy Karin E: Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics, doi: 10.1093/bioinformatics/btab184 (2021).
Teufel, F., Almagro Armenteros, J.J., Johansen, A.R. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40, 1023–1025 doi: 10.1038/s41587-021-01156-3 (2022).
Shi G., Kang X., Dong F., Liu Y., Zhu N., Hu Y., Xu H., Lao X., Zheng H., DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides, Nucleic Acids Research, 50,D1, doi: 10.1093/nar/gkab651 (2022).
The Shiny development team, Shiny for Python, https://shiny.posit.co/py/, license:https://github.com/posit-dev/py-shiny/blob/main/LICENSE v.0.8.0
Inc., P. T. Collaborative data science. Montreal, QC: Plotly Technologies Inc. Retrieved from https://plot.ly (2015)
Upsetplot, https://github.com/jnothman/UpSetPlot license: https://github.com/jnothman/UpSetPlot/blob/master/LICENSE v.0.9.0
py3Dmol, https://github.com/avirshup/py3dmol license: https://github.com/avirshup/py3dmol/blob/master/LICENSE.txt