Test runs
InterProScan
Example run for interproscan to generate input for --interproscan_output
.
Please refer to the InterProScan documentation for full description of how to use it.
Download the interproscan datasets as described in the user documents:
singularity pull docker://interpro/interproscan:latest # Beaware! If the sequences contain any non-alphabet characters, it will crash! faa=path/to/faa/files mkdir output temp for FN in $faa/*.faa; do N=$(basename $FN .faa) singularity exec \ -B $db:/opt/interproscan/data \ -B $faa/output:/output \ -B $faa/temp:/temp \ -B $FN:$FN \ interproscan_latest.sif \ /opt/interproscan/interproscan.sh \ --input $FN \ --disable-precalc \ --output-dir /output \ --tempdir /temp \ --cpu 16 \ --applications PANTHER,ProSiteProfiles,ProSitePatterns,Pfam \ --disable-residue-annot \ --enable-tsv-residue-annot \ --formats tsv ; done
Full run
To test the functionality of AMPcombi, we provide test files for the required and optional inputs. Those can be found in the tests directory.
Step1: Download the test files and untar:
git clone https://github.com/Darcy220606/AMPcombi.git tar -xzvf ./tests/test_faa.tar.gz tar -xzvf ./tests/test_gbk.tar.gz tar -xzvf ./tests/test_files.tar.gz tar -xzvf ./tests/test_optional_files.tar.gz
📍 These input files can be generated ina streamlined approach using nf-core/funcscan - a pipeline for predicting functional genes in metagenomes.
Step2: Parse the tables and filter the AMP hits recovered:
ampcombi parse_tables \ --amp_results ./tests/test_files/ \ --faa ./tests/test_faa/ \ --gbk ./tests/test_gbk/ \ --interproscan_output ./tests/test_optional_files/interproscan_output/ \ --sample_metadata ./tests/test_optional_files/sample_metadata.tsv \ --contig_metadata ./tests/test_optional_files/contig_metadata.tsv \ --sample_list sample_1 sample_2 \ --amp_database 'DRAMP' \ --aminoacid_length 100 --db_evalue 100 --amp_cutoff 0.7 \ --ampir_file '.tsv' --amplify_file '.tsv' --macrel_file '.tsv' --neubi_file '.fasta' --hmmsearch_file '.txt' --ampgram_file '.tsv' --amptransformer_file '.txt' \ --log 'true' --threads 16
Step3: Concatenate the summary files:
mv sample_1 test_ampsummaries/ mv sample_2 test_ampsummaries/ ampcombi complete --summaries_directory ./test_ampsummaries --log 'true'
Step4: Cluster the the filtered AMPs into families:
ampcombi cluster --ampcombi_summary Ampcombi_summary.tsv --log 'true' --threads
Step5: Predict signal peptides:
ampcombi signal_peptide \ --ampcombi_cluster Ampcombi_summary_cluster.tsv \ --signalp_model ./signalpv6.0h-slowsequential/models --log 'true'